
Formal Modeling and Analysis of the OGDC

Wireless Sensor Network Algorithm in

Real-Time Maude

Peter Csaba Ölveczky and Stian Thorvaldsen

Department of Informatics, University of Oslo
peterol@ifi.uio.no stianth@ifi.uio.no

Abstract. This paper describes the application of Real-Time Maude
to the formal specification, simulation, and further formal analysis of
the sophisticated state-of-the-art OGDC wireless sensor network algo-
rithm. Wireless sensor networks in general, and the OGDC algorithm in
particular, pose many challenges to their formal specification and analy-
sis, including novel communication forms, treatment of geographic areas,
time-dependent and probabilistic features, and the need to analyze both
correctness and performance. Real-Time Maude extends the rewriting
logic tool Maude to support formal specification and analysis of object-
based real-time systems. This paper explains how we formally specified
OGDC in Real-Time Maude, how we could simulate our specification
to perform all the analyses done by the algorithm developers using the
network simulation tool ns-2, and how we could perform further formal
analyses which are beyond the capabilities of simulation tools. A remark-
able result is that our Real-Time Maude simulations seem to provide a
much more accurate estimate of the performance of OGDC than the ns-2
simulations. To the best of our knowledge, this is the first time a formal
tool has been applied to an advanced wireless sensor network algorithm.

1 Introduction

This paper describes the application of Real-Time Maude [17, 15] to the formal
specification, simulation, and further formal analysis of the state-of-the-art opti-
mal geographical density control (OGDC) wireless sensor network algorithm [22].
To the best of our knowledge, this work represents the first formal modeling and
analysis effort of such a complex wireless sensor network system.

A wireless sensor network (WSN) consists of many small, cheap, and low-
power sensor nodes that use wireless technology (usually radio) to communicate
with each other [2]. Given the increasing sophistication of WSN algorithms—and
the difficulty of modifying an algorithm once the sensor network is deployed—
there is a clear need to use formal methods to validate system performance and
functionality prior to implementing such algorithms.

In [19] we advocate the use of the language and tool Real-Time Maude [15,
17], which extends the rewriting logic-based Maude [3] tool to real-time sys-
tems, to formally specify, simulate, and further analyze WSN algorithms. The

Real-Time Maude specification language emphasizes expressiveness and ease of
specification. The data types of a system are defined by equational specifica-
tions. Instantaneous transitions are defined by rewrite rules, and time elapse
is defined by “tick” rewrite rules. Real-Time Maude supports the specification
of distributed object-oriented systems, which is ideal for modeling a network
system. The high-performance Real-Time Maude tool provides a range of analy-
sis techniques, including: timed rewriting for simulation purposes; timed search
for reachability analysis; and time-bounded linear temporal logic model check-
ing. Real-Time Maude has been used to model and analyze a set of advanced
real-time systems, such as large communication protocols [18, 8] and scheduling
algorithms [13]. Such analysis has found subtle design errors not uncovered dur-
ing traditional simulation and testing. We argue in [19] that Real-Time Maude’s
expressive specification formalism, and the ease with which new forms of com-
munication can be defined, should make it ideal to model WSN systems.

Jennifer Hou suggested to us her OGDC algorithm [22] for WSNs as a chal-
lenging modeling and analysis task. OGDC is a sophisticated state-of-the-art
algorithm that tries to maintain complete sensing coverage of an area for as long
as possible by switching nodes on and off. It has been simulated by the algorithm
developers Zhang and Hou using the simulation tool ns-2 [12, 4].

The OGDC algorithm is an advanced algorithm whose formal specification,
simulation, and analysis pose a set of challenges, including:

1. Modeling—and computing with—spatial entities such as coverage areas, an-
gles, and distances.

2. Modeling broadcast communication with transmission delays and limited
transmission range.

3. Modeling time-dependent behavior, such as use of timers, transmission de-
lays, and power consumption.

4. Modeling probabilistic behaviors. For example, sensor nodes volunteer to
start with certain probabilities, and different values are supposed to be “ran-
dom values, drawn from a uniform distribution.”

5. Simulating and analyzing systems with hundreds of sensor nodes.
6. Analyzing both correctness and, in particular, performance.

This is indeed a challenging set of modeling and analysis tasks. This paper
shows how Real-Time Maude met these challenges. In particular, during simula-
tions of the algorithm, we are able to do in Real-Time Maude all the performance
analyses that Zhang and Hou performed using the wireless extension of the net-
work simulation tool ns-2 [12]. In addition, we have subjected the algorithm to
time-bounded reachability analysis and temporal logic model checking.

By modeling transmission delays (which play a significant role in the defi-
nition of the OGDC algorithm), and by comparing our performance measures
with the ns-2 simulation results, we found a discrepancy which could be ex-
plained by a (minor) weakness in the algorithm if the ns-2 simulations did not
take the transmission delays into account.1 To test this hypothesis, we also per-

1 We have not received information of whether the ns-2 simulations actually took the
transmission delays into account, only that it is likely that they did not.

formed Real-Time Maude simulations without considering transmission delays.
The results of these simulations are quite similar to the ns-2 simulations. It is
therefore tempting to conjecture that our original simulations provide a much
more accurate estimate of the performance of OGDC than the ns-2 simulations.

Related work. Our work represents—to the best of our knowledge—the first
formal modeling and analysis of such a sophisticated WSN algorithm as OGDC.
Some attempts at using formal methods on WSNs have focused on modeling
TinyOS using automaton-based formalisms (see, e.g., [5]), or have considered
simple diffusion protocols for discovering routing trees [11]. Our paper [19] ex-
plains related work in more detail. That paper also suggests that Real-Time
Maude might be a good candidate for formally modeling WSNs, and shows how
certain features of such networks, including locations, distances, and communi-
cation can be easily modeled in Real-Time Maude. In contrast, this paper focuses
on the OGDC case study: It shows how the general techniques suggested in [19]
can be applied to specify OGDC; on how advanced features, such as coverage
areas, can be modeled in Real-Time Maude; on additional analysis efforts; and
on understanding the relationship between the results obtained by Real-Time
Maude simulations and by ns-2 simulations. Lately, there has been some initial
efforts applying Real-Time Maude to WSNs elsewhere [6, 20].

2 Real-Time Maude

A Real-Time Maude timed module specifies a real-time rewrite theory [14] of the
form (Σ, E, IR,TR), where:

– (Σ, E) is a membership equational logic [10] theory with Σ a signature2 and
E a set of conditional equations. The theory (Σ, E) specifies the system’s
state space as an algebraic data type. (Σ, E) must contain a specification of
a sort Time modeling the time domain (which may be dense or discrete).

– IR is a set of labeled conditional instantaneous rewrite rules specifying the
system’s instantaneous (i.e., zero-time) local transitions, each of which is
written crl [l] : t => t′ if cond, where l is a label. Such a rule specifies
a one-step transition from an instance of t to the corresponding instance of t′,
provided the condition holds. The rules are applied modulo the equations E.3

– TR is a set of tick (rewrite) rules, written with syntax

crl [l] : {t} => {t′} in time τ if cond .

that model time elapse. {_} is a built-in constructor of sort GlobalSystem,
and τ is a term of sort Time that denotes the duration of the rewrite.

2 i.e., Σ is a set of declarations of sorts, subsorts, and function symbols (or operators)
3 E is a union E′

∪A, where A is a set of equational axioms such as associativity, com-
mutativity, and identity, so that deduction is performed modulo A. Operationally, a
term is reduced to its E′-normal form modulo A before any rewrite rule is applied.

The initial states must be ground terms of sort GlobalSystem and must be
reducible to terms of the form {t} using the equations in the specifications. The
form of the tick rules then ensures uniform time elapse in all parts of the system.

In object-oriented Real-Time Maude modules, a class declaration

class C | att1 : s1, ... , attn : sn .

declares a class C with attributes att1 to attn of sorts s1 to sn. An object of class
C in a given state is represented as a term < O : C | att1 : val1, ..., attn : valn >

where O is the object’s identifier, and where val1 to valn are the current val-
ues of the attributes att1 to attn. In a concurrent object-oriented system, the
state, which is usually called a configuration, is a term of the built-in sort
Configuration. It has typically the structure of a multiset made up of objects
and messages. Multiset union for configurations is denoted by a juxtaposition
operator (empty syntax) that is declared associative and commutative, so that
rewriting is multiset rewriting supported directly in Real-Time Maude. The dy-
namic behavior of concurrent object systems is axiomatized by specifying each
of its concurrent transition patterns by a rewrite rule. For example, the rule

rl [l] : m(O,w) < O : C | a1 : x, a2 : O’, a3 : z > =>

< O : C | a1 : x + w, a2 : O’, a3 : z > dly(m’(O’),x) .

defines a family of transitions in which a message m, with parameters O and w, is
read and consumed by an object O of class C. The transitions have the effect of
altering the attribute a1 of the object O and of sending a new message m’(O’)

with delay x (see [17]). “Irrelevant” attributes (such as a3, and the right-hand
side occurrence of a2) need not be mentioned in a rule.

Timed modules are executable under reasonable assumptions, and Real-Time
Maude provides a spectrum of analysis capabilities. We summarize below the
Real-Time Maude analysis commands used in our case study.

Real-Time Maude’s timed “fair” rewrite command simulates one behavior
of the system up to a certain duration. It is written with syntax

(tfrew t in time <= τ .)

where t is the initial state and τ is a ground term of sort Time.
Real-Time Maude’s timed search command uses a breadth-first strategy to

search for states that are reachable from a given initial state t within time τ ,
match a search pattern, and satisfy a search condition. The command which
searches for one state satisfying the search criteria has syntax

(tsearch [1] t =>* pattern such that cond in time <= τ .)

Real-Time Maude also extends Maude’s linear temporal logic model checker [3]
to check whether each behavior “up to a certain time,” as explained in [17], sat-
isfies a temporal logic formula. State propositions are terms of sort Prop, and
their semantics should be given by (possibly conditional) equations of the form

{statePattern} |= prop = b

for b a term of sort Bool, which defines the state proposition prop to hold in
all states {t} where {t} |= prop evaluates to true. A temporal logic formula
is constructed by state propositions and temporal logic operators such as True,
False, ~ (negation), /\, \/, -> (implication), [] (“always”), <> (“eventually”),
and U (“until”). The time-bounded model checking command has syntax

(mc t |=t formula in time <= τ .)

for t the initial state and formula the temporal logic formula.

Finally, the find latest command finds how long it takes, in the worst case,
to reach a desired state.

3 Overview of the OGDC Algorithm

In a two-dimensional plane, a node with sensing range rs can sense events in a
circular coverage area with radius rs. It is desirable that the coverage areas of
the active nodes cover the entire area to be monitored (the “sensing area”) for as
long as possible. A large number of nodes is often deployed to extend the lifetime
of a wireless sensor network, so that some nodes can be intentionally “put to
sleep” to save power. A node that is inactive can be switched on when needed.
The process of periodically choosing the nodes that can be put to sleep while
maintaining coverage (and connectivity) of the sensing area is called the density
control process. The OGDC algorithm [22] is a state-of-the-art density control
algorithm, developed by Zhang and Hou, that tries to select the set of active
nodes such that their coverage areas provide the minimum amount of overlap.

The network lifetime is divided into rounds, where each round is divided
into a node selection phase and a steady state phase. The node selection phase
begins with each node having status “undecided” and probabilistically choosing
whether or not to volunteer to be a starting node. Each node that volunteers sets
its backoff timer to a small value. The node then becomes active when its backoff
timer expires, and broadcasts a power-on message which contains the location of
the node and a random direction. When an “undecided” node receives a power-on
message, it checks if its entire coverage area is covered by the surrounding active
nodes, in which case the node becomes inactive. Otherwise, it sets its backoff
timer depending on how close the node is to the optimal position w.r.t. the nodes
that are currently active. The timer value is set to a gradually larger value as
the distance increases and the direction deviates. When the backoff timer of a
node expires, the node becomes active and broadcasts a power-on message that
may cause other nodes to reset their backoff timers or to become inactive. The
network enters the steady state phase when each node is either active or inactive.
When a round is over, the density control process starts over again.

Fig. 1. The bitmap for a node’s coverage area.

4 The Real-Time Maude Specification of OGDC

This section presents a sample of our specification of the OGDC algorithm.4

General techniques for modeling typical WSN features, such as distances and
communication, are described in [19].

4.1 Modeling Locations

We can represent a location in the plane as a term x.y, for rational numbers x
and y, of the following sort Location:5

sort Location .

op _._ : Rat Rat -> Location .

4.2 Modeling Areas using Bitmaps

A significant part of the OGDC algorithm consists of checking whether a node’s
coverage area is completely covered by the coverage areas of other active nodes,
since this determines whether or not a node can be switched off. Zhang and Hou
suggest in a preliminary version of [22] to use a bitmap to model a node’s coverage
area. A coverage area is divided into a grid, and each bit in the bitmap represents
the center of a grid square. The Real-Time Maude tool is not a graphical tool,
but with proper use of the format operator attribute [3], a bitmap can be given
an intuitive appearance as shown in Fig. 1. We define a bitmap as a term of sort
Bitmap, which consists of a list of BitLists6, which in itself is a list of Bits. A
Bit has one of three values: t if the location of the bit is covered by at least one
other active node, f if the location is not covered, or the bit ’ that is used to
“pad” the circles as shown in Fig. 1. The sort Bitmap is thus defined as follows:

4 Our specification is explained in detail in [21]. The entire executable Real-Time
Maude specification can be found at http://www.ifi.uio.no/RealTimeMaude/OGDC.

5 Underbars in the declarations of operators such as . denote the places of arguments
for “mix-fix” function symbols.

6 Each BitList corresponds to a “row” in the bitmap.

sorts Bitmap BitList Bit . subsort Bit < BitList .

ops t f ’ : -> Bit [ctor] .

op nil : -> BitList [ctor] .

op __ : BitList BitList -> BitList [ctor assoc id: nil format (o s o)] .

op |_| : BitList -> Bitmap [ctor format (ni o o o)] .

op nil : -> Bitmap [ctor] .

op __ : Bitmap Bitmap -> Bitmap [ctor assoc id: nil] .

The location of each bit is computed from the location of the node which is the
center of the bitmap. A function updateBitmap updates a node’s bitmap when
the node receives a power-on message (see rule recPowerOn1) by setting each bit
within the sensing range of the sender to t. The node then also checks whether
its (updated) bitmap is completely covered by its neighbors. This is done by
the function coverageAreaCovered, which returns false if some bit is ‘f’ and
returns true otherwise (owise):

vars BITL BITL’ : BitList . vars BM BM’ : Bitmap .

op coverageAreaCovered : Bitmap -> Bool .

eq coverageAreaCovered(BM | BITL f BITL’ | BM’) = false .

eq coverageAreaCovered(BM) = true [owise] .

We choose to have 1 meter between each bit in a bitmap, which results in bitmaps
with 400 bits (including the ’ bits) since the sensing range of a node is 10 meters.

4.3 The Definition of Sensor Node Objects

We model sensor nodes as objects of the class WSNode. A sensor node does not
have an explicit identifier but can be identified by its location. We let locations be
object identifiers by giving the subsort declaration subsort Location < Oid .

class WSNode | backoffTimer : TimeInf, coverageArea : Bitmap,

uncoveredCrossings : CrossingSet,

remainingPower : Nat, neighbors : NeighborSet,

roundTimer : TimeInf, status : Status,

volunteerProb : Rat, hasVolunteered : VolunteerStatus .

The attribute names are self-explanatory: backoffTimer denotes the time re-
maining until the node must perform an action; coverageArea contains the
node’s coverage area; remainingPower denotes the amount of power the node
has left; roundTimer is the time remaining of the round; status denotes the
node’s status, which is either on, off, or undecided; volunteerProb gives the
probability for the node to volunteer as a starting node; and hasVolunteered

denotes whether the node has volunteered as a starting node.

4.4 Modeling Time and Time Elapse

We follow the guidelines in [17] for modeling time-dependent behaviors in object-
oriented specifications. Time elapse is modeled by the tick rule

var C : Configuration . var T : Time .

crl [tick] : {C} => {δ(C, T)} in time T if T <= mte(C) .

The function δ defines the effect of time elapse on a configuration, and the
function mte defines the maximum amount of time that can elapse before some
action must take place. These functions distribute over the objects and messages
in a configuration and must be defined for single objects. The tick rule advances
time nondeterministically by any amount T less than or equal to mte(C). Be-
fore executing the system, a time sampling strategy guiding the application of
the tick rule must be defined (see Section 5.1). We import the built-in module
NAT-TIME-DOMAIN-WITH-INF, which defines the time domain Time to be the nat-
ural numbers, with an additional constant INF (for ∞) of a supersort TimeInf.

The function δ is defined on a WSNode object by decreasing its timers and
amount of remaining power according to the time that has elapsed:

vars L L’ : Location . var T : Time . vars TI TI’ : TimeInf .

var P : NzNat . var S : Status . vars M N : Nat . var D : Int .

var V : VolunteerStatus . var R : Rat . var NBS : NeighborSet .

eq δ(< L : WSNode | remainingPower : N, status : S,

backoffTimer : TI, roundTimer : TI’ >, T)

=

< L : WSNode | remainingPower : if S == on then N monus (idlePower * T)

else N monus (sleepPower * T) fi,

backoffTimer : TI monus T, roundTimer : TI’ monus T > .

The constants idlePower and sleepPower denote the amount of power the
node consumes per time unit (millisecond) when the node is active and inactive,
respectively. The function monus is defined by x monus y = max(0, x − y).

The function mte is defined so that time cannot advance when a node is in
its volunteering process (undecided)—forcing the node to enter this process at
the start of each round—and otherwise cannot advance beyond the expiration
time of a timer, or beyond the time when the node would run out of power:

eq mte(< L : WSNode | backoffTimer : TI, roundTimer : TI’, status : S,

remainingPower : P, hasVolunteered : V >) =

if V == undecided then 0 else

min(TI, TI’, if S == on then ceiling(P / idlePower)

else ceiling(P / sleepPower) fi) fi .

4.5 Modeling Communication

The informal description of the OGDC algorithm says that nodes broadcast mes-
sages within the radio range. Furthermore, a node does not know its neighbors.
Most time related parameters in OGDC are set according to the transmission
time of a message, which is assumed to be the same for all broadcast transmis-
sions. This is a clear indication that transmission delays must be captured in the
model. In [19] we show how such “area broadcast” with transmission delay ∆

can be easily modeled in Real-Time Maude. The idea is that the sender l sends
a “broadcast message” broadcast m from l, where m is the message content,
into the configuration. This broadcast message is then defined to be equivalent
to a set of single messages dly(msg m from l to l′, ∆), one such message for
each sensor node l′ within the radio range of l.

Since the description of OGDC does not discuss packet collisions, and only
mentions that OGDC also should work in the presence of message losses, we
have not modeled problems that are due to packet collisions.

4.6 Probabilistic Behaviors

The OGDC algorithm exhibits probabilistic behaviors in that (i) some actions are
performed with probability p, and (ii) some values are supposed to be set to “ran-
dom values, drawn from a uniform distribution . . . ” As mentioned, Real-Time
Maude does not provide explicit support for specifying probabilistic behavior.
Instead, for simulation purposes, we define a function random, which generates
a sequence of numbers pseudo-randomly and which satisfies Knuth’s criteria for
a “good” random number generator [7]. The state must then contain an object
of a class RandomNGen with an attribute seed which stores the ever-changing
“seed” for random. Probabilistic behaviors can then be modeled by “sampling”
a value from the given interval using the random function. For the purpose of
specifying all possible behaviors, we could have—but have not, due to the re-
sulting large reachable state spaces that would have made exhaustive analysis
unfeasible—modeled probabilistic behavior by nondeterministic behavior by (i)
letting a probabilistic action be enabled as long as the probability of it being
performed is greater than 0, and (ii) by letting the “random” value be a new
variable, only occurring in the right-hand side of the rewrite rule, which can be
given any value in the desired interval.

4.7 Defining the Dynamic Behavior of the OGDC Algorithm

The dynamic behavior of the OGDC algorithm is modeled in Real-Time Maude
by 11 rewrite rules, 3 of which are given below.

At the start of each round of the OGDC algorithm, each node is in state
undecided and must decide whether or not to volunteer as a starting node. This
part of the protocol is described as follows in [22]:

A node volunteers to be a starting node with probability p if its power exceeds
a pre-determined threshold Pt. [...] If a sensor node volunteers, it sets a backoff
timer to τ1 seconds, where τ1 is uniformly distributed in [0, Td]. When the
timer expires, the node changes its state to “ON”, and broadcasts a power-on
message. [...] The power-on message sent by the starting node contains (i) the
position of the sender and (ii) the direction α along which the second working
node should be located. This direction is randomly generated from a uniform
distribution in [0, 2π]. [...] If the node does not volunteer itself to be a starting
node, it sets a timer of Ts seconds. [...]

This part of the OGDC algorithm is probabilistic, since a node decides to volun-
teer with probability p. We simulate such probabilistic behavior in the following
rewrite rules by checking whether the next pseudo-random number generated in
the system, modified to a value between 0 and 999 (randomProb(M), defined as
random(M) rem 1000), is less than R, where R denotes the current volunteering
probability multiplied by 1000. The first rule models the start of the “starting
node selection” phase when the node’s hasVolunteered attribute is undecided:

rl [volunteer] :

< L : WSNode | remainingPower : P, volunteerProb : R,

hasVolunteered : undecided >

< Random : RandomNGen | seed : M >

=>

(if (randomProb(M) < R) and (P > powerThreshold or R == 1000)

then < L : WSNode | backoffTimer : randomTimer(random(M)),

hasVolunteered : true >

else < L : WSNode | backoffTimer : Ts, hasVolunteered : false,

volunteerProb : doubleProb(R) >

fi)

< Random : RandomNGen | seed : random(random(M)) > .

The node must also have sufficient remaining power (P > powerThreshold), or
its volunteer probability must have reached 1 (R == 1000). If the node volun-
teers, it sets its backoff timer to a random value between 0 and Td by the function
randomTimer. If the node does not volunteer, it sets its backoff timer to Ts. The
seed is also updated, so that the next application of this (or any other) rule will
draw a completely different random number.

A node becomes active when its backoff timer expires. If the node volunteered
as a starting node, it broadcasts a power-on message that contains the node’s
location and a random direction:

rl [startingNodePowerOn] :

< L : WSNode | remainingPower : P, backoffTimer : 0,

hasVolunteered : true >

< Random : RandomNGen | seed : M >

=>

< L : WSNode | remainingPower : P monus transPower,

backoffTimer : INF, status : on >

< Random : RandomNGen | seed : random(M) >

broadcast (powerOnWithDirection randomDirection(M)) from L .

The node consumes transPower amount of power when it broadcasts a message.
The actions taken when a node receives a power-on message are described as

follows in [22]:

When a sensor node receives a power-on message, if the node is already
“ON”, or it is more than 2 rs away from the sender node, it ignores the mes-
sage; otherwise it adds this node to its neighbor list, and checks whether or not
all its neighbors’ coverage disks completely cover its own coverage disk. If so,
the node sets its state to “OFF” and turns itself off. Otherwise [...]

The next rule models the case where the receiver has status undecided and its
coverage area becomes entirely covered by its active neighbors (including the
sender of the current power-on message). In this case, the node turns itself off:

crl [recPowerOn1] :

(msg (powerOnWithDirection D) from L’ to L)

< L : WSNode | status : undecided, neighbors : NBS, bitmap : BM >

=>

< L : WSNode | status : off, neighbors : NBS (L’ starting (D >= 0)),

bitmap : updateBitmap(L, BM, L’), backoffTimer : INF >

if (L withinTwiceTheSensingRangeOf L’)

/\ coverageAreaCovered(updateBitmap(L, BM, L’)) .

5 Simulation and Formal Analysis of OGDC

This section describes how the OGDC algorithm can be subjected to the follow-
ing kinds of formal analysis in Real-Time Maude:

1. Monte Carlo simulation, with probabilistic behavior simulated using our
pseudo-random number generator, by timed fair rewriting. In particular, we
show how Real-Time Maude can perform all the simulations done by Zhang
and Hou on the wireless extension of the network simulation tool ns-2.

2. Time-bounded reachability analysis and temporal logic model checking of
all possible behaviors from some initial state with respect to the particular
values generated by the pseudo-random generator. That is, our analysis is
incomplete since we do not analyze all possible behaviors for a given net-
work topology, but only those that can take place with the specific choice of
pseudo-random numbers used to simulate the probabilistic behavior. Never-
theless, such analysis covers many different behaviors from a given state.

In our experiments, we use the same values for parameters such as sensing range
(10m), length of a round (1000 seconds), power consumption, transmission times,
etc., as in the ns-2 simulations in [22]. In those simulations, 100 to 1000 nodes
were “uniformly randomly distributed” in a 50m× 50m sensing area.

5.1 Defining Initial States and the Time Sampling Strategy

To easily simulate large sensor networks with different node locations and initial
seeds, we define a function genInitConf to generate initial states. The term
genInitConf(n,seed) defines a configuration with n sensor nodes scattered at
pseudo-random locations within the sensing area, as well as a RandomNGen object
with starting seed computed from the initial seed seed. (An initial state must
also add the operator {_}.) We can therefore generate initial states with any
number of nodes, and/or place them in different locations, by just changing the
parameters n and/or seed in genInitConf.

In the following definition, each generated sensor node location x.y will have
0 ≤ x ≤ Xsize and 0 ≤ y ≤ Ysize (since rem is the remainder function):

op genInitConf : Nat Nat -> Configuration .

op genInitConf : Nat Nat Nat -> Configuration .

vars M SEED N : Nat .

eq genInitConf(N, SEED) = genInitConf(N, SEED, N) .

ceq genInitConf(M, SEED, N) =

if M == 0 then

--- no more nodes to generate; generate RandomNGen object:

< Random : RandomNGen | seed : SEED >

else --- more nodes to generate:

< L : WSNode | remainingPower : lifetime, status : undecided,

neighbors : none, bitmap : initBitmap(L),

uncoveredCrossings : none, backoffTimer : INF,

roundTimer : roundTime, volunteerProb : 1000 / N,

hasVolunteered : undecided >

--- and generate the remaining M-1 nodes:

genInitConf(M - 1, random(random(SEED)), N)

fi

if L := random(SEED) rem (Xsize + 1) . --- x part of L

random(random(SEED)) rem (Ysize + 1) . --- y part of L

Each generated WSNode gets the appropriate initial values for its attributes. The
third argument to the genInitConf in the main equation is needed to store the
total number of nodes in the system (N) so that the volunteerProb attribute
gets the correct initial value.

A time sampling strategy guiding the execution of the tick rule must be cho-
sen before any analysis can take place. Since all events in the OGDC algorithm
happen at specific times, we have shown in [16] that we can “fast forward” be-
tween these events without losing any interesting behaviors. Therefore, in our
analysis, we use the maximal time sampling strategy declared by the Real-Time
Maude command (set tick max def roundTime .) which advances time as
much as possible, and corresponds to “event-driven simulation.”

5.2 The ns-2 Simulations of OGDC in Real-Time Maude

In [22], Zhang and Hou use the network simulation tool ns-2 [12], with the
wireless extension developed by the CMU Monarch group [4], to simulate the
OGDC algorithm and measure the following essential performance metrics :

– The number of active nodes and the percentage of sensing area coverage
provided by those nodes at the end of the first round.

– The percentage of sensing area coverage and the total amount of remaining
power for the whole system throughout the network’s lifetime.

– The total time during which at least α percent of the sensing area is covered.
(This can be done in the same way as the first two, and is not treated here.)

We cannot use Real-Time Maude’s timed rewrite command directly to perform
the corresponding analysis, since these performance metrics should be measured
at different points in time throughout the lifetime of the system, and since the
metrics themselves do not appear explicitly in the state. Therefore, we add to
the initial state a record object that uses a timer to compute a performance
metric at the same time (e.g., just before the end of the round) in each round
during a simulation of the OGDC algorithm. The computed values are stored
in an attribute of the record object as a list n1 ++ n2 ++ · · · ++ nk, where ni

denotes the value of the metric at the end of round i. Given a sort NatList of
lists of natural numbers, with concatenation operator _++_ and empty list nil,
we can declare the record object class as follows:

class RecActNodes | activeNodes : NatList, timer : TimeInf .

ops r1 r2 r3 : -> Oid [ctor] . --- names of record objects

The following rule applies when the timer of the record object expires. It com-
putes and stores the number of active nodes in the system, and resets the timer

in order for it to be expire again at the same time in the next round:

var SYSTEM : Configuration . var NL : NatList . var O : Oid .

rl [computeNumActiveNodes] :

{< O : RecActNodes | activeNodes : NL, timer : 0 > SYSTEM}

=>

{< O : RecActNodes | activeNodes : NL ++ numActiveNodes(SYSTEM),

timer : roundTime > SYSTEM} .

The function numActiveNodes computes the number of active nodes in a con-
figuration. In the same way, we define record object classes RecCoverage% and
RecTotalPower, which compute, respectively, the percentage of the sensing area
covered by the active nodes and the total amount of power in the system.

The first simulations in [22] investigate the number of active nodes and the
percentage of coverage in the first round of the algorithm. The following timed
fair rewrite command simulates a system with 600 nodes (in a 50m×50m sensing
area) until the end of the first round of the protocol (in time < roundTime).
The initial state contains two record objects, whose metrics will be computed
when their timers expire just before the end of the first round (roundTime - 1):

Maude> (tfrew {genInitConf(600, 1)

< r1 : RecActNodes | activeNodes : nil,

timer : roundTime - 1 >

< r2 : RecCoverage% | cov% : nil, timer : roundTime - 1 >}

in time < roundTime .)

Result ClockedSystem :

{< r1 : RecActNodes | activeNodes : 45 , timer : 1000000 >

< r2 : RecCoverage% | cov% : 100 , timer : 1000000 >

... } in time 999999

As shown in the analysis messages, 45 of the 600 deployed nodes became active
nodes and together provided 100% coverage of the sensing area.

Zhang and Hou then measure how coverage and total remaining power changes
over time. The following rewrite command simulates 50 rounds of the algorithm
(in time < roundTime * 50) with 200 nodes in the 50m× 50m sensing area:

Maude> (tfrew {genInitConf(200, 313)

< r1 : RecCoverage% | cov% : nil, timer : roundTime - 1 >

< r2 : RecTotalPower | power : nil, timer : roundTime - 1 >}

in time < roundTime * 50 .)

Result ClockedSystem :

{< r1 : RecCoverage% | cov% : 100 ++ ... ++ 100 ++ 98 ++ ... ++ 100 ++ 94

++ 88 ++ ... ++ 13 ++ 0 ++ ... ++ 0) , ... >

< r2 : RecTotalPower | power : 384639803547 ++ 370475585958 ++ ...

++ 371677818 ++ 0 ++ ... ++ 0) , ... >

... } in time 49999999

The result shows that the nodes can provide 100% coverage for 19 rounds, with
a decrease of coverage in certain intermediate rounds.

5.3 Comparison with the ns-2 Simulations

The table on the next page compares our simulation results with the ns-2 sim-
ulation results in [22]. Our simulations show a higher number of active nodes
(more than twice as many, in fact) and a correspondingly shorter network life-
time. Furthermore, in contrast to the ns-2 simulations, we get more active nodes
when more nodes are deployed in the same area. These differences cannot be ex-
plained by us ignoring packet collisions in our simulations, since [22] states that
“the number of working nodes may increase” in the presence of message losses.
The most plausible explanation for the different results is instead the following:
In OGDC, if two nodes are close to one another, then the difference between
their backoff timers is smaller than the transmission delay. If transmission de-
lays are ignored during the simulations, potentially because the simulation tool
makes it inconvenient to simulate such delays, then only one of the neighbors will
become active. However, if, as in our case, we capture transmission delays, then
the backoff timer of the “worse” node will expire before it receives the power-on
message from the “better” node, and, hence, both nodes will become active.

We have, unfortunately, not been able to get an answer to whether or not
the ns-2 simulations in [22] actually took the transmission delays into account,
although the second author told us it is quite likely that they did not. Therefore,
we have also performed the simulations without transmission delays (by just
removing the dly-part from the single messages created by the broadcast). The
following table shows the results of the ns-2 simulations, as well as of the Real-
Time Maude simulations both with and without transmission delays, for finding
the number of active nodes at the end of the first round for 200, 400, and 600
nodes in the same 50m× 50m area. For the Real-Time Maude simulations, each

number represents the average result of five simulations, obtained by using five
different initial seeds (and hence getting five different placements of the nodes):

Number of nodes in sensing area 200 400 600

active nodes in ns-2 simulations 17 18 18

active nodes in Real-Time Maude simulations with trans. delay 34 45 55

active nodes in Real-Time Maude simulations without trans. delay 21 22 22

Indeed, the results of the Real-Time Maude simulations that ignore transmission
delays are quite similar to the results of the ns-2 simulations. It is therefore
tempting to conjecture that our Real-Time Maude simulations with transmission
delays give a reasonably accurate estimate of the performance of OGDC in such
a setting. In that case, one can conclude that the results of ns-2 simulations are
actually quite misleading and that our formal model provides a more accurate
simulation setting for OGDC than ns-2 with the wireless extension.

5.4 Further Real-Time Maude Analysis of the OGDC Algorithm

We give some examples of how we can further formally analyze correctness and
worst-case performance of the OGDC algorithm by using Real-Time Maude’s
search and model checking capabilities. Due to the large states involved, we
restrict such analyses to systems with 5 to 6 nodes (in a 25m×25m area), which
is much fewer nodes than in a real WSN. Nevertheless, exhaustive analysis with
3 to 4 nodes has uncovered subtle bugs in cryptographic protocols [9] and other
kinds of network protocols (e.g., [18]).

The following find latest command finds the latest possible time the net-
work enters the steady state phase (such that steadyStatePhase(...)), and
thereby also finds out whether this phase is always reached in the first round.

Maude> (find latest {genInitConf(6, 75)} =>* {C:Configuration}

such that steadyStatePhase(C:Configuration)

in time < roundTime .)

Result: { ... } in time 372

That is, the system will reach the steady state phase in at most 372 ms. One
round of the OGDC algorithm is 1000 seconds, which means that the network
spends most of its lifetime performing its sensing task.

Another correctness requirement is that the network stays in the steady state
phase throughout the first round, once this phase has been reached. We use Real-
Time Maude’s temporal logic model checker, and define an atomic proposition
steady-state to hold when the network is in steady state phase:

op steady-state : -> Prop [ctor] .

eq {C} |= steady-state = steadyStatePhase(C) .

The following command checks whether all states following a state in the steady
state phase are also in this phase (A => B is an abbreviation for [](A -> B)).

Maude> (mc {genInitConf(5,341)} |=t (steady-state => [] steady-state)

in time < roundTime .)

Result Bool : true

The most important correctness criterion is that the entire sensing area is covered
by the active nodes when the system is in the steady state phase (and all nodes
together cover the entire area and each node has power to last to the end of the
round). The following command searches for a state which is in steady state but
where the entire 20m × 20m sensingArea is not covered by the active nodes:

Maude> (tsearch [1]

{genInitConf(5,97)} =>* {C:Configuration}

such that steadyStatePhase(C:Configuration) /\

not coverageAreaCovered(updateArea(sensingArea,

C:Configuration))

in time < roundTime .)

The function updateArea updates the bitmap by changing bits that are covered
by the active nodes in C to t. The command returned ‘No solution.’

Performance figures. The following table shows, for each command presented in
this paper, and for the above search command with a different topology (given
by seed 1) which does not cover the sensing area: the number of sensor nodes;
execution time; and memory usage when executed on a 3.6 GHz Intel Xeon:

tfrew 1 rd tfrew 1 rd tfrew 1 rd tfrew 50 rds find mc tsearch tsearch

200 400 600 200 6 5 6, s=1 5, s=7197

180 sec 1243 sec 5034 sec 4931 sec 4187 sec 26 sec 679 sec 227 sec

85 MB 100 MB 112 MB 93 MB 525 MB 147 MB 1.3 GB 430 MB

The paper [22] does not mention the performance of their ns-2 simulations.

6 Concluding Remarks

Wireless sensor networks are a new kind of network whose modeling, simulation,
and/or analysis pose a set of challenges to both network simulation tools and
formal tools. OGDC is a state-of-the-art WSN algorithm where new forms of
communication and advanced data types must be captured at an appropriate
level of abstraction. In this paper we have shown how OGDC was formally
specified, simulated, and analyzed using Real-Time Maude. To the best of our
knowledge, this is the first formal analysis of an advanced WSN algorithm. Our
formal specification captures the behavior of the algorithm at a high level of
abstraction and—being precise, intuitive, and operational—could make a good
starting point for an implementation of the OGDC algorithm on sensor networks.

We could measure all performance metrics measured in the ns-2 simulations
in [22] during our “Monte Carlo” simulations. Our simulations showed signif-
icantly worse performance of the OGDC algorithm than the ns-2 simulations.

Trying to understand why—unlike in the ns-2 simulations—we got more ac-
tive nodes when more nodes were deployed in the same sensing area, we found
that the “tie-breaking” mechanism in OGDC does not break many ties when
transmission delays are taken into account. To check this hypothesis, we also
simulated OGDC in Real-Time Maude in a setting without transmission delays,
and got results that were similar to the ns-2 results. It is therefore quite likely
that our simulations, which take the delays into account, provide much more ac-
curate performance estimates than the ns-2 simulations that may have ignored
such delays. Furthermore, based on communication with Jennifer Hou, it seems
that developing the Real-Time Maude specification and performing the Real-
Time Maude analysis required much less effort than using a specialized network
simulation tool to analyze OGDC.

Our work should continue in different directions. First, we focus on simplicity
and elegance when modeling coverage areas and defining functions on such areas.
There is a price to pay for this when we have hundreds of nodes, each with a
bitmap with 400 “bits.” Therefore, more efficient representations of coverage
areas should be developed. This would enable us to perform search and model
checking on larger networks.

Second, we have not modeled probabilistic behaviors as such, but have used a
“sampling” technique for simulation purposes. This means that we cannot reason
about probabilistic properties. We should therefore combine Real-Time Maude
with methods and tools for probabilistic systems, such as PMaude [1], and should
develop methods to fruitfully analyze probabilistic real-time specifications.

Finally, we should also capture message losses due to packet collisions.

Acknowledgments. We are grateful to Jennifer Hou for suggesting the OGDC

algorithm as a challenging modeling task, and for discussions on sensor networks, to

José Meseguer for discussions on modeling communication in sensor networks, and

to the anonymous reviewers for helpful comments on earlier versions of this paper.

Support by the Research Council of Norway is also gratefully acknowledged.

References

1. G. Agha, J. Meseguer, and K. Sen. PMaude: Rewrite-based specification language
for probabilistic object systems. In Proc. QAPL’05, 2005.

2. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: A survey. Computer Networks, 38:393–422, 2002.

3. M. Clavel, F. Dúran, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude Manual (Version 2.2), December 2005. http://maude.cs.uiuc.edu.

4. CMU monarch extensions to ns. http://www.monarch.cs.cmu.edu/.
5. S. Coleri, M. Ergen, and T. J. Koo. Lifetime analysis of a sensor network with

hybrid automata modelling. In WSNA ’02. ACM, 2002.
6. M. Kim, N. Dutt, and N. Venkatasubramanian. Policy construction and validation

for energy minimization in cross layered systems: A formal method approach. In
IEEE RTAS’06 Work-in-Progress Session, pages 25–28, 2006.

7. D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms,
volume 2. Addison-Wesley, second edition, 1981.

8. E. Lien. Formal modelling and analysis of the NORM multicast protocol using
Real-Time Maude. Master’s thesis, Dept. of Linguistics, University of Oslo, 2004.

9. G. Lowe. An attack on the Needham-Schroeder public-key authentication protocol.
Information Processing Letters, 56:131–133, 1995.

10. J. Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In WADT’97, volume 1376 of LNCS. Springer, 1998.

11. S. Nair and R. Cardell-Oliver. Formal specification and analysis of performance
variation in sensor network diffusion protocols. In MSWiM ’04. ACM, 2004.

12. ns-2 network simulator. http://www.isi.edu/nsnam/ns.
13. P. C. Ölveczky and M. Caccamo. Formal simulation and analysis of the CASH

scheduling algorithm in Real-Time Maude. In L. Baresi and R. Heckel, editors,
FASE’06, volume 3922 of LNCS, pages 357–372. Springer, 2006.

14. P. C. Ölveczky and J. Meseguer. Specification of real-time and hybrid systems in
rewriting logic. Theoretical Computer Science, 285:359–405, 2002.

15. P. C. Ölveczky and J. Meseguer. Specification and analysis of real-time systems
using Real-Time Maude. In FASE 2004, volume 2984 of LNCS. Springer, 2004.

16. P. C. Ölveczky and J. Meseguer. Abstraction and completeness for Real-Time
Maude. In Proc. WRLA’06, 2006.

17. P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation, 2007. To appear.

18. P. C. Ölveczky, J. Meseguer, and C. L. Talcott. Specification and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. Formal Methods
in System Design, 29:253–293, 2006.

19. P. C. Ölveczky and S. Thorvaldsen. Formal modeling and analysis of wireless
sensor network algorithms in Real-Time Maude. In IPDPS 2006. IEEE, 2006.

20. D. E. Rodŕıguez. On modelling sensor networks in Maude. In Proc. WRLA 2006.
21. S. Thorvaldsen and P. C. Ölveczky. Formal modeling and analysis of the OGDC

wireless sensor network algorithm in Real-Time Maude. Manuscript. http://www.
ifi.uio.no/RealTimeMaude/OGDC, October 2005.

22. H. Zhang and J. C. Hou. Maintaining sensing coverage and connectivity in large
sensor networks. Wireless Ad Hoc and Sensor Networks: An International Journal,
1, 2005.

A Modeling Communication and Defining Initial States

One of the key reasons enabling us to model OGDC at (what we consider to
be) an appropriate level of abstraction is that different forms of communication,
including the one assumed in OGDC, can be easily defined in Real-Time Maude.
In [19] we show how to model typical WSN broadcast communication. Since
communication plays a crucial role in formally modeling OGDC, we explain this
again in Section A.1.

A.1 Modeling Communication in WSNs

The following function distanceSq defines the square of the distance between
two locations:7

7 Real-Time Maude also provides a built-in data type of floating-point numbers, with
functions such as square root, but we prefer to stay within the rational numbers
whenever possible.

op distanceSq : Location Location -> Rat .

vars X X’ Y Y’ : Rat .

eq distanceSq(X . Y, X’ . Y) =

((X - X’) * (X - X’)) + ((Y - Y’) * (Y - Y’)) .

Given a constant transRange denoting the transmission range of a sensor
node, we can check whether (the location of) a node is within the transmission
range of another node:

vars L L’ : Location .

op _withinTransRangeOf_ : Location Location -> Bool .

eq L withinTransRangeOf L’ =

distanceSq(L, L’) <= transRange * transRange .

Assuming that object identifiers are locations, we can now define a commu-
nication model for WSNs as it seems to be assumed in the informal description
of OGDC given in [22]. That description says that nodes broadcast messages
within the radio range. Furthermore, a node does not know its neighbors. Most
time related parameters in OGDC are set according to the transmission time of
a message, which is a clear indication that transmission delays must be captured
in the model. In OGDC, the transmission delay does not depend on the distance
between sender and receiver. We have not modeled packet collisions.

In what follows, we model broadcast where a message must reach all nodes
within the radio range of the sender and where the transmission is subject to a
transmission delay ∆. The idea is that the sender l sends a “broadcast message”
broadcast m from l, where m is the message content, into the configuration.
This broadcast message is defined to be equivalent to a set of single messages
dly(msg m from l to l′, ∆) with delay ∆, one for each sensor node l′ within
the radio range of l. The messages are declared as follows:

sort MsgCont . --- Message content

msg broadcast_from_ : MsgCont Location -> Msg .

msg msg_from_to_ : MsgCont Location Location -> Msg .

The following equation defines the desired equivalence:

var C : Configuration . var MC : MsgCont .

eq {< L : WSNode | > (broadcast MC from L) C} =

{< L : WSNode | > distributeMsg(L, MC, C)} .

It is the task of distributeMsg to create an addressed message for each WSNode

object in C that is within the transmission range of L. The use of the operator {_}
enables the equation to grab the entire state (C), except the sender L, to ensure
that all appropriate nodes in the system will get the message. The function
distributeMsg is defined recursively over the elements in a configuration:

op distributeMsg : Location MsgCont Configuration

-> Configuration [frozen (3)] .

var MSG : Msg . var O : Oid . var OBJECT : Object .

eq distributeMsg(L, MC, none) = none .

eq distributeMsg(L, MC, MSG C) =

MSG distributeMsg(L, MC, C) .

eq distributeMsg(L, MC, < L’ : WSNode | > C) =

< L’ : WSNode | > distributeMsg(L, MC, C)

if L withinTransRangeOf L’

then dly(msg MC from L to L’, ∆) else none fi .

eq distributeMsg(L, MC, OBJECT C) =

OBJECT distributeMsg(L, MC, C) [owise] .

The first equation above distributes the message from L with content MC to
the empty configuration none. The second equation distributes the message to
another message MSG and the remaining part C of the configuration. No new
message should be created in these cases. The third equation distributes the
message to a configuration consisting of a WSNode object L’ and the remaining
configuration C. In this case, a single message to L’ is created if L’ is within the
transmission range of L. Finally, the fourth equation distributes the message to
objects that are not WSNode objects (attribute owise), that is, to the RandomNGen
object or to a record object used in the simulations. A new message to such an
object is not created. In the last three equations, the message content is then
also recursively distributed to the remaining part C of the configuration.

To illustrate the flexibility of the language, we see that if the transmission
delay between two nodes l and l′ is instead a function of the distance between
them, say f(l, l′), we can just replace ∆ with f(L, L’) in the last equation. This
flexibility allowed us, as mentioned, to simulate OGDC in a setting without
transmission delays by just setting ∆ to be 0 (or, equivalently, by removing the
dly part of the third equation above).

A.2 More Details About Our Simulation Results

In Section 5.3 we present the average of five Real-Time Maude simulations for
different number of nodes in the system. In what follows, we spell out the number
of active nodes found at the end of the first round for each of the separate Real-
Time Maude simulations, both with and without transmission delays.

Real-Time Maude simulation with transmission delays. The following table shows
the number of active nodes in our simulations with transmission delays, for dif-
ferent values of n and seed in the initial state (genInitConf):

Number of nodes in sensing area 200 400 600

active nodes for seed=1 32 38 45

active nodes for seed=5 38 47 51

active nodes for seed=97 26 46 58

active nodes for seed=313 38 54 60

active nodes for seed=341 37 39 61

Real-Time Maude simulation without transmission delays. The following table
shows the number of active nodes at the end of the first round in our simulations
without transmission delays :

Number of nodes in sensing area 200 400 600

active nodes for seed=1 21 25 22

active nodes for seed=5 19 20 24

active nodes for seed=97 19 23 25

active nodes for seed=313 21 23 21

active nodes for seed=341 23 20 18

ns-2 simulation results reported in [22]. The average of 20 ns-2 simulations for
different number of nodes are presented in a diagram in [22]. It is somewhat
difficult to see the exact values in this graphic representation, but to me it looks
like the number of active nodes they get is around 17-19, and is independent of
the number of sensor nodes deployed.

This is fairly different from the results of our Real-Time Maude simulations
with transmission delays, which, in addition to reporting significantly more ac-
tive nodes, also report more active nodes when more nodes are deployed. On
the other hand, this is not the case (to a significant degree) in our Real-Time
Maude simulations without transmission delays, which report results that can
be considered fairly close to the ns-2 simulation results.

