IN5100: Formal Semantics of C in K

Peter Olveczky

October 18, 2023

Curriculum

The curriculum is the paper

Chucky Ellison, Grigore Rosu: An executable formal semantics of C with ap-
plications. In Proc. POPL 2012. ACM. Available, certainly from UiO, via
https://dl.acm.org/doi/10.1145/2103621.2103719.

As always, I do not expect students to be experts in C or K, although some basic knowledge

of C might be useful. Try to get the big picture, especially being able to answer the following
“questions.”

What to know?

e (Section 1) Why is a formal semantics of C needed? What benefits will/should such a
semantics yield?

(Section 2) What are the main differences between the presented C semantics and
previous efforts? For example in terms of executability.

(Section 3.1) Why does the C standard allow behaviors (programs, I guess) that are
undefined or only partially defined?

Why shouldn’t we require one fixed semantics for all C programs? That is, why shouldn’t
we require all C code be portable?

(Section 3.2) Try to understand the three code fragments in Section 3.2, and explain
why the result is as it is.

(Section 3.3) No need to understand this in detail. And no need to read the last
paragraph in 3.3.

(Section 4.2 and Figure 2) Try to have a brief overview/understanding of what “kinds”
of information (about a C program execution) that is maintained in the global state of
the semantics.

(Section 4.3) Try to have some understanding of how a memory (location) is represented
in the semantics.



(Section 4.4.1) What do you think is represented (or “what happens”) in the K “code”
in the middle of the right column on page 5377

Otherwise, no need to focus on the details in Section 4.4.
(Section 4.6) Why are some of the C expressions towards the end of page 539 undefined?

Why is the “entire semantics” needed to check whether the code sketch on top of page
540 is undefined?

No need to read the last four paragraphs in Section 4.6.
(Section 5) What do they test their semantics on?

— Why do they exclude some programs from this “torture set”?

— Why do the authors first only “get inspired by” 30% of the torture test programs
when developing their semantics?

What are the results of their evaluations, compared to existing compilers.

(Section 6) What are some applications of their semantics? No details needed; just get
the basic ideas/applications.

(Section 8) What was the effort needed to develop the semantics of the standard?



