IN5100: Probabilistic Systems and Probabilistic and Statistical Model Checking

Peter Ölveczky

October 18, 2023

In general, we go light on the theory; try to understand the main concepts. Especially, no (non-trivial) background in statistics or probability theory is assumed.

Curriculum (pensum)

In some sense, the questions below and the lecture 7 and its exercises broadly defines the curriculum for this part. Officially, the curriculum consists of the following:

1. The paper

Gul Agha, José Meseguer, Koushik Sen: *PMaude: Rewrite-based Specification Language for Probabilistic Object Systems*, Electronic Notes in Theoretical Computer Science, Volume 153, Issue 2, 2006, Pages 213-239, ISSN 1571-0661, https://doi.org/10.1016/j.entcs.2005.10.040. Should be available from UiO at https://www.sciencedirect.com/science/article/pii/S1571066106002672.

2. The paper

Musab AlTurki and José Meseguer: *PVeStA: A Parallel Statistical Model Checking and Quantitative Analysis Tool*, in Proc. CALCO 2011, volume 6859 of Lecture Notes in Computer Science, Springer, 2011. https://doi.org/10.1007/978-3-642-22944-2_28.

- 3. Section 17.2 in my book Designing Reliable Distributed Systems.
- 4. The lecture, its slides, exercises, etc.

The following background papers, which are basically the papers introducing SMC, are also worth reading for some background:

- Håkan L. S. Younes and Reid G. Simmons: *Probabilistic Verification of Discrete Event Systems Using Acceptance Sampling*. In Proc. CAV 2002, volume 2404 of Lecture Notes in Computer Science, Springer, 2002.
- Koushik Sen, Mahesh Viswanathan, and Gul Agha: On Statistical Model Checking of Stochastic Systems. In Proc. CAV 2005, volume 3576 of Lecture Notes in Computer Science, Springer, 2005.

What to Know

What you should take away from the lecture, and be able to answer well, are:

- What are probabilistic systems, and why are they needed?
- What are (simple discrete-time) Markov chains (DTMCs) and Markov decision processes (MDPs)?
- How does the curriculum suggest that we specify probabilistic systems in (an extension of?) rewriting logic? (I.e., what are probabilistic rewrite theories?)
- Specify simple probabilistic systems as probabilistic rewrite theories.
- What does it mean that a system is *fully probabilistic*?
- How can we *execute/simulate* such simple probabilistic rewrite theories in Maude, using randomized simulations where the new variables of the variables are sampled according to the given probability distribution?
- Have a rough idea of what is *probabilistic temporal logic* (such as PCTL) and *continuous* stochastic logic (CSL), and be able to write simple probabilistic requirements in these formalisms.
- What is probabilistic model checking? What is the main drawback of probabilistic model checking mentioned in the course?
- What is *statistical model checking* (SMC)?
 - what are the parameters α and δ (in the case of QuaTEx model checking with PVeStA)?
 - rough idea of how SMC works
- What are the main advantages of SMC discussed in the course? Why is it useful? What is the main drawback?
- Have a rough idea (no details needed) of what QuaTEx is.
- How can we turn the problem of statistically model checking a (simple) probabilistic property into statistically model checking a QuaTEx property? (That is, in what sense does QuaTEx SMC generalize SMC of probabilistic temporal logic properties?)
- What is the "main requirements" of systems so that they can be subjected to statistical model checking?
- How does the curriculum propose to make a somewhat large class of object-based Maude specifications fully probabilistic (with probability 1)?
- What is PVeStA?
- What are the differences between *probabilistic* and *statistical* model checking?